import cv2 # Load the image image = cv2.imread("mid_image.jpg") # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Resize the image to half its original size for display (pop up window) scale_percent = 20 # percent of original size width = int(gray.shape[1] * scale_percent / 100) height = int(gray.shape[0] * scale_percent / 100) dim = (width, height) resized_gray = cv2.resize(gray, dim, interpolation=cv2.INTER_AREA) # Show resized image cv2.imshow("Detected Rectangle", resized_gray) cv2.waitKey(0) cv2.destroyAllWindows() """# Apply Gaussian blur blur = cv2.GaussianBlur(gray, (5, 5), 0) # Run Canny edge detector edges = cv2.Canny(blur, 50, 150) # Find contours contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Select the largest contour (presumed to be the rectangle) contour = max(contours, key=cv2.contourArea) # Draw the detected contour on a copy of the original image output = image.copy() cv2.drawContours(output, [contour], -1, (0, 255, 0), 3) # Save or show the result cv2.imwrite("rectangle_edges.jpg", output) cv2.imshow("Detected Rectangle", output) cv2.waitKey(0) cv2.destroyAllWindows()"""